6/29/2009

Testing Wrangler with
QuickCheck

Huiging Li
Simon Thompson

Computing Lab, University of Kent
www.cs.kent.ac.uk/projects/wrangler/

Erlang Factory 2009 University of ‘ Q,\l
I(ent Computing



Overview

Refactoring

Wrangler — an Erlang Refactorer.
Validation of Refactoring Tools.
Testing Wrangler With QuickCheck.

Conclusions.

University of

6/29/2009 Erlang Factory 2009 K.. w2
ent .

omputing




Introduction

Refactoring -- changing the structure of existing
code without changing its meaning.

Example: generalisation and renaming.

-module (test).
—export ([£/1]).

(r1) -> 1[1].
([HIT]) —>

add_one
add_one

[H+1 |add_one (T) ].

f(X) —> add_one (X).

6/29/2009

=)

Erlang Factory 2009

-module (test).
—export ([£/1]).

add_one
add_one

([1,N) —> [].
([HIT],N) —>
[H+N |add_one(T,N) ];

f(X) —> add_one(X,1).
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Introduction

Refactoring -- changing the structure of existing
code without changing its meaning.

Example: generalisation and renaming.

-module (test).
—export ([£/1]).

add_one ([H|T]) —-—>
[H+1 | add_one(T)];
add_one ([]) —> [].

f(X) —> add_one (X).

-module (test).
—export ([£/1]).

add_int ([],N) —> [].
‘ aciel dmt ([E[(T].N) =

[H+N |add_int(T,N)];

f(X) —-> add_int(X,1).
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Introduction

Refactoring:
pre-conditions + program transformation + post-conditions.

Tools support for refactoring is essential.
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Wrangler — An Erlang Refactorer S J

A tool for interactive refactoring of Erlang
programs.

Embedded in Emacs and Eclipse+ErlIDE.
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4 emacs@HL-LT -

File Edit Options Buffers Tools | Refactor | Inspector Erlang Help

LDeEx 88 <

—module (tes=t) .

—exportc ([E/0]1) .

repeat (HN) when H=<0 —>
ok

repeat (N) when N>=1 —>
o Format {"Hel o™} .

repeat (H—1) .

EfY —3
repeat (5) -

—— (Unix}——

O

test.erl

Fenarme Variable Mame

Fename Function Mame

Fename Module Mame

Generalise Function Definition
FMowve Function to Ancther Module
Function Extraction

Fold Expression Against Function

Tuple Function Arguments

FRename a Process (beta)
Add a Tag to Messages (beta)
Register a Process (beta)

From Function to Process

Detect Duplicated Code in Current Buffer
Detect Duplicated Code in Dirs

Identical Expression Search

Introduce a Macro

Fold Against Macro Definition
Undo
Custoermize Wrangler

Version
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Validation ot Refactoring Engines

Refactoring tools should be reliable.

A bug in a refactoring tool could introduce bugs
into the programs refactored.

Validation of refactoring tools is hard.
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Validation ot Refactoring Engines

Regression testing of refactored programs.

Programs as data
m Abstract Syntax Tree (AST).
m Source code, when layout is also important.

Program verification.
Property-based testing.
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Manual Validation of Refactoring Engines

Erlang 1
program L

L]
Apply a

refactoring
command Have | cqvered en.ough
| refactoring senarios?

Refactored
Program

]

~

Manual inspection o |

of the refactored This is tedious!
program y
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Testing Wrangler with QuickCheck

Erlang Generate Erlang programs using Quickcheck,
program or use a codebase of real world Erlang
programs.
Apply a - o s usi
refactoring energte refactoring commands using
QuickCheck.
command
Refactored
program

Manual inspection
of the refactored
program
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Testing Wrangler with QuickCheck.

Example: testing renaming a function name
m Refactoring command generation.

rename_fun_ commands (Dir)
?LET (FileName, gen_filename (Dir),
{FileName,

—>

oneof (collect_fun_locs (FileName) ),

oneof (collect_names (FileName) ),
Dir}) .

= Some sample commands generated.

41

o\°

R
o\°

o\°

{“refac_rename_fun.erl", {243,64},halt,"c:/wrangler/test"}
{"refac_gc.erl", {184,48},ordsets, "c:/wrangler-0.1/test"}
{"test.erl", {5,39},"DDD", "c:/wrangler-0.1/test"}
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Testing Wrangler with QuickCheck.

Post-conditions as properties.
= General conditions.

The refactored code meets all the tests that the
original version met.

The refactoring engine should not crash.
The new program should compile.

m Refactoring-specific conditions, e.q.

Renaming a variable name should not change the
binding structure of the program.

Inversiblity

Generalising a function, f/n say, turns occurrences
of f/n to f/(n+1).
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Conclusions

The correctness of refactoring is tested against
specifications written in Erlang.

The development of refactorings and their testing
are very closely integrated.

Able to run many test cases in a very short time,
and find bugs more quickly.

A lot easier to test the refactoring tool on large
systems.
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Thank you

Questions?
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