6/29/2009

Testing Wrangler with
QuickCheck

Huiging Li
Simon Thompson

Computing Lab, University of Kent
www.cs.kent.ac.uk/projects/wrangler/

Erlang Factory 2009 University of ‘ Q,\l
I(ent Computing



Overview

Refactoring

Wrangler — an Erlang Refactorer.
Validation of Refactoring Tools.
Testing Wrangler With QuickCheck.

Conclusions.

University of

6/29/2009 Erlang Factory 2009 K.. w2
ent .

omputing




Introduction

Refactoring -- changing the structure of existing
code without changing its meaning.

Example: generalisation and renaming.

-module (test).
—export ([£/1]).

(r1) -> 1[1].
([HIT]) —>

add_one
add_one

[H+1 |add_one (T) ].

f(X) —> add_one (X).

6/29/2009

=)

Erlang Factory 2009

-module (test).
—export ([£/1]).

add_one
add_one

([1,N) —> [].
([HIT],N) —>
[H+N |add_one(T,N) ];

f(X) —> add_one(X,1).

Kent

University of | [~

.3
Computing



Introduction

Refactoring -- changing the structure of existing
code without changing its meaning.

Example: generalisation and renaming.

-module (test).
—export ([£/1]).

add_one ([H|T]) —-—>
[H+1 | add_one(T)];
add_one ([]) —> [].

f(X) —> add_one (X).

-module (test).
—export ([£/1]).

add_int ([],N) —> [].
‘ aciel dmt ([E[(T].N) =

[H+N |add_int(T,N)];

f(X) —-> add_int(X,1).

6/29/2009

Erlang Factory 2009 University of | (»
Kent

4
Computing



Introduction

Refactoring:
pre-conditions + program transformation + post-conditions.

Tools support for refactoring is essential.

University of

6/29/2009 Erlang Factory 2009 K..
ent

S
Computing




Wrangler — An Erlang Refactorer S J

A tool for interactive refactoring of Erlang
programs.

Embedded in Emacs and Eclipse+ErlIDE.

6/29/2009 Erlang Factory 2009 University of ‘ L6
Kent Com\putmg



4 emacs@HL-LT -

File Edit Options Buffers Tools | Refactor | Inspector Erlang Help

LDeEx 88 <

—module (tes=t) .

—exportc ([E/0]1) .

repeat (HN) when H=<0 —>
ok

repeat (N) when N>=1 —>
o Format {"Hel o™} .

repeat (H—1) .

EfY —3
repeat (5) -

—— (Unix}——

O

test.erl

Fenarme Variable Mame

Fename Function Mame

Fename Module Mame

Generalise Function Definition
FMowve Function to Ancther Module
Function Extraction

Fold Expression Against Function

Tuple Function Arguments

FRename a Process (beta)
Add a Tag to Messages (beta)
Register a Process (beta)

From Function to Process

Detect Duplicated Code in Current Buffer
Detect Duplicated Code in Dirs

Identical Expression Search

Introduce a Macro

Fold Against Macro Definition
Undo
Custoermize Wrangler

Version

e )

¥

n

1|

e *erl-ontput* Al11 Lz
Hew paramceter nams: E!.D

T T T B e b Sty

¥

m




Validation ot Refactoring Engines

Refactoring tools should be reliable.

A bug in a refactoring tool could introduce bugs
into the programs refactored.

Validation of refactoring tools is hard.

iversity of | [x
6/29/2009 Erlang Factory 2009 University o ‘ L8
Kent Computing



Validation ot Refactoring Engines

Regression testing of refactored programs.

Programs as data
m Abstract Syntax Tree (AST).
m Source code, when layout is also important.

Program verification.
Property-based testing.

w.9

L}
Computing

ersity of
6/29/2009 Erlang Factory 2009 University o
Kent




Manual Validation of Refactoring Engines

Erlang 1
program L

L]
Apply a

refactoring
command Have | cqvered en.ough
| refactoring senarios?

Refactored
Program

]

~

Manual inspection o |

of the refactored This is tedious!
program y

ersity of
6/29/2009 Erlang Factory 2009 university of | 1 4 g
Kent .

Computing

Have | covered enough program
senarios?




Testing Wrangler with QuickCheck

Erlang Generate Erlang programs using Quickcheck,
program or use a codebase of real world Erlang
programs.
Apply a - o s usi
refactoring energte refactoring commands using
QuickCheck.
command
Refactored
program

Manual inspection
of the refactored
program

Erl Fact 2009 University of
6/29/2009 rlang Factory Ken

Formalise as QuickCheck properties.

it
Computing




Testing Wrangler with QuickCheck.

Example: testing renaming a function name
m Refactoring command generation.

rename_fun_ commands (Dir)
?LET (FileName, gen_filename (Dir),
{FileName,

—>

oneof (collect_fun_locs (FileName) ),

oneof (collect_names (FileName) ),
Dir}) .

= Some sample commands generated.

41

o\°

R
o\°

o\°

{“refac_rename_fun.erl", {243,64},halt,"c:/wrangler/test"}
{"refac_gc.erl", {184,48},ordsets, "c:/wrangler-0.1/test"}
{"test.erl", {5,39},"DDD", "c:/wrangler-0.1/test"}

6/29/2009

Erlang Factory 2009

University of
Kent

L1z

Computing




Testing Wrangler with QuickCheck.

Post-conditions as properties.
= General conditions.

The refactored code meets all the tests that the
original version met.

The refactoring engine should not crash.
The new program should compile.

m Refactoring-specific conditions, e.q.

Renaming a variable name should not change the
binding structure of the program.

Inversiblity

Generalising a function, f/n say, turns occurrences
of f/n to f/(n+1).

6/29/2009 Erlang Factory 2009 K.. i3
ent ;.

Computing




Conclusions

The correctness of refactoring is tested against
specifications written in Erlang.

The development of refactorings and their testing
are very closely integrated.

Able to run many test cases in a very short time,
and find bugs more quickly.

A lot easier to test the refactoring tool on large
systems.

6/29/2009 Erlang Factory 2009 PN

Kent Computing



Thank you

Questions?

wversity of
6/29/2009 Erlang Factory 2009 University o ‘ Q15
Kent Computing



